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Abstract: Today‟s typical computing environment has changed 
from mainframe systems to small computing systems that often 
cooperate via communication networks. Distributed Operating 
Systems Concepts and Design addresses the organization and 
principles of distributed computing systems. Although it does not 
concentrate on any particular operating system or hardware, it 
introduces the major concepts of distributed operating systems 
without requiring that readers know all the theoretical or 
mathematical fundamentals. Distributed operating systems have 
many aspects in common with centralized ones, but they also differ 
in certain ways. This paper is intended as an introduction to 
distributed operating systems, and especially to current university 
research about them. After a discussion of what constitutes a 
distributed operating system and how it is distinguished from a 
computer network, various key design issues are discussed. 
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1. Introduction 

Everyone agrees that distributed systems are going to be 

very important in the future. Unfortunately, not everyone 

agrees on what they mean by the term “distributed system.” 

In this paper we present a view point widely held within 

academia about what is and is not a distributed system, we 

discuss numerous interesting design issues concerning them, 

and finally we conclude with a fairly close look at some 

experimental distributed systems that are the subject of 

ongoing research at universities[1]. A distributed operating 

system is one that looks to its users like an ordinary 

centralized operating system but runs on multiple, 

independent central processing units (CPUs). The key 

concept here is transparency. In other words, the use of 

multiple processors should be invisible (transparent) to the 

user. Another way of expressing the same idea is to say that 

the user views the system as a “virtual uniprocessor,” not as 

a collection of distinct machines.  

   To make the contrast with distributed operating systems 

stronger, let us briefly look at another kind of system, which 

we call a “network operating system.” A typical 

configuration for a network operating system would be a 

collection of personal computers along with a common 

printer server and file server [35] for archival storage, all tied 

together by a local network. Users are typically aware of 

where each of their files are kept and must move files 

between machines with explicit “file transfer” commands, 

instead of having file placement managed by the operating 

system. The system has little or no fault tolerance [3][6][17]; 

if 1 percent of the personal computers crashes, 1 percent of 

the users are out of business, instead of everyone simply 

being able to continue normal work, albeit with 1 percent 

worse performance. 

 

1.1 Goals and Problem 

A more fundamental problem in distributed systems is the 

lack of global state information. It is generally a bad idea to 

even try to collect complete information about any aspect of 

the system in one table. Lack of up-to-date information 

makes many things much harder. It is hard to schedule the 

processors optimally if you are not sure how many are up at 

the moment. Many people, however, think that these 

obstacles can be overcome in time, so there is great interest 

in doing research on the subject. 

 

2. Network Operating System 

Before starting our discussion of distributed operating 

systems, it is worth first taking a brief look at some of the 

ideas involved in network operating systems, since they can 

be regarded as primitive forerunners. Although attempts to 

connect computers together have been around for decades, 

networking really came into the limelight with the 

ARPANET in the early 1970s. The original design did not 

provide for much in the way of a network operating system. 

Instead, the emphasis was on using the network as a glorified 

telephone line to allow remote login and file transfer. Later, 

several attempts were made to create net- work operating 

systems, but they never were widely used. In more recent 

years, several research organizations have connected 

collections of minicomputers running the UNIX operating 

system into a network operating system, usually via a local 

network [9] [19] [29] gives a good survey of these systems, 

which we shall draw upon for the remainder of this section. 

As we said earlier, the key issue that distinguishes a network 

operating system from a distributed one is how aware the 

users are of the fact that multiple machines are being used. 

This visibility occurs in three primary areas: the file system, 

protection, and program execution. Of course, it is possible 

to have systems that are highly transparent in one area and 

not at all in the other, which leads to a hybrid form. 

 

2.1 File System 

When connecting two or more distinct systems together, the 

first issue that must be faced is how to merge the file systems 

[18] [19] [22] [37]. Three approaches have been tried. 

Survey on Distributed Operating Systems: A 
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     The first approach is not to merge them at all. Going this 

route means that a program on ma- chine A cannot access 

files on machine B by making system calls. Instead, the user 

must run a special file transfer program that copies the 

needed remote files to the local machine, where they can 

then be accessed normally. Sometimes remote printing and 

mail is also handled this way. One of the best-known 

examples of networks that primarily supports file transfer 

[11] and mail via special programs, and not system call 

access to remote files, is the UNIX “uucp” program, and its 

network, USENET.  

    The next step upward in the direction of a distributed file 

system is to have adjoining file systems. In this approach, 

programs on one machine can open files on another ma- 

chine by providing a path name telling where the file is 

located. For example, one could say open(‟ 

„/machinel/pathname‟ „, READ); open(“machine/pathname”, 

READ); open(„f/. ./machinel/pathname”, READ); The latter 

naming scheme is used in the Newcastle Connection [19] 

and is derived from the creation of a virtual “super 

directory” above the root directories of all the connected 

machines. Thus “/. .” means start at the local root directory 

and go upward one level (to the super directory), and then 

down to the root directory of machine.” In Figure 1, the root 

directory of three machines, A, B, and C are shown, with a 

super directory above them. To access file x from machine 

C, one could say open (‟ „/. ./C/x‟ „, READ-ONLY).  In the 

Newcastle system, the naming tree is actually more general, 

since “machine 1” may really be any directory, so one can 

attach a machine as a leaf anywhere in the hierarchy, not just 

at the top.  

  The third approach is the way it is done in distributed 

operating systems, namely, to have a single global file 

system visible from all machines. When this method is used, 

there is one “bin” directory for binary programs, one 

password file, and so on. When a program wants to read the 

pass- word file it does something like open (‟ „/etc/passwd‟ „, 

READ-ONLY) without reference to where the file is. It is up 

to the operating system to locate the file and arrange for 

transport of data as they are needed. LOCUS is an example 

of a system using this approach. The convenience of having 

a single global name space is obvious. In addition, this 

approach means that the operating system is free to move 

files around among machines to keep all the disks equally 

full and busy, and that the system can maintain. 

     Replicated copies of files if it so chooses. When the user 

or program must specify the machine name, the system 

cannot decide on its own to move a file to a new machine 

because that would change the (user visible) name used to 

access the file. Thus in network operating system, control 

over file placement must be done manually by the users, 

whereas in a distributed operating system it can be done 

automatically by the system itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A (virtual) superdirectory above the root directory 

provides access to remote files. 

 

 

2.2 Protection 

Closely related to the transparency of the file system is the 

issue of protection. UNIX and many other operating systems 

assign a unique internal identifier to each user. Each file in 

the file system has a little table associated with it (called an 

i-node in UNIX) telling who the owner is, where the disk 

blocks are located, etc. If two previously independent 

machines are now connected, it may turn out that some 

internal User Identifier (UID), for example, number 12, has 

been assigned to a different user on each machine. 

Consequently, when user 12 tries to access a remote file, the 

remote file system cannot see whether the access is permitted 

since two different users have the same UID. One solution to 

this problem is to require all remote users wanting to access 

files on machine X to first log onto X using a user name that 

is local to X. When used this way, the network is just being 

used as a fancy switch to allow users at any terminal to log 

onto any computer, just as a telephone company switching 

center allows A better approach is to have the operating 

system provide a mapping between UIDs, so that when a 

user with UID 12 on his or her home machine accesses a 

remote machine on which his or her UID is 15, the remote 

machine treats all accesses as though they were done by user 

15. This approach implies that sufficient tables are provided 

to map each user from his or her home (machine, UID) pair 

to the appropriate UID for any other machine (and that 

messages cannot be tampered with).any subscriber to call 

any other subscriber. This solution is usually inconvenient 

for people and impractical for programs, so something better 

is needed. The next step up is to allow any user to access 

files on any machine without having to log in, but to have 

the remote user appear to have the UID corresponding to 

“GUEST” or “DEMO” or some other publicly known login 

name. Generally such names have little authority and can 

only access files that have been designated as readable or 

writable by all users. In a true distributed system there 

should be a unique UID for every user, and that UID should 

be valid on all machines with- out any mapping. In this way 

no protection problems arise on remote accesses to files; as 

far as protection goes, a remote access can be treated like a 

local access with the same UID. The protection issue makes 

the difference between a network operating system and a 

distributed one clear: In one case there are various machines, 

each with its own user-to-UID mapping and in the other 

there is a single, system wide mapping that is valid 

everywhere. 

 

A B C 
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2.3 Execution Location 

Program execution is the third area in which machine 

boundaries are visible in network operating systems. When a 

user or a running program wants to create a new process, 

where is the process created? At least four schemes have 

been used thus far. The first of these is that the user simply 

says “CREATE PROCESS” in one way or another, and 

specifies nothing about where. Depending on the 

implementation, this can be the best or the worst way to do 

it. In the most distributed case, the system chooses a CPU by 

looking at the load, location of files to be used, etc. In the 

least distributed case, the system always runs the process on 

one specific machine (usually the machine on which the user 

is logged in). The second approach to process location is to 

allow users to run jobs on any machine by first logging in 

there. In this model, processes on different machines cannot 

communicate or exchange data, but a simple manual load 

balancing is possible. The third approach is a special 

command that the user types at a terminal to cause a program 

to be executed on a specific ma- chine. A typical command 

might be remote vax4 who to run program on machine vax4. 

In this arrangement, the environment of the new process is 

the remote machine. In other words, if that process tries to 

read or write files from its current working directory, it will 

discover that its working directory is on the remote machine, 

and that files that were in the parent process‟s directory are 

no longer present. Similarly, files written in the working 

directory will appear on the remote machine, not the local 

one. The fourth approach is to provide the “CREATE 

PROCESS” system call with a parameter specifying where 

to run the new process, possibly with a new system call for 

specifying the default site. As with the previous method, the 

environment will generally be the remote machine. In many 

cases, signals and other forms of interprocess 

communication between processes do not work properly 

among processes on different machines. A final point about 

the difference between network and distributed operating 

systems is how they are implemented. A common way to 

realize a network operating system is to put a layer of 

software on top of the native operating systems of the 

individual machines. For example, one could write a special 

library package that would intercept all the system calls and 

decide whether each one was local or remote [19] Although 

most system calls can be handled this way without 

modifying the kernel, invariably there are a few things, such 

as interprocess signals, interrupt characters (e.g., BREAK) 

from the keyboard, etc., that are hard to get right. In a true 

distributed operating system one would normally write the 

kernel from scratch. 1.4 An Example: The Sun Network File 

System To provide a contrast with the true distributed 

systems described later in this paper, in this section we look 

briefly at a network operating system that runs on the Sun 

Microsystems‟ workstations. These work stations are 

intended for use as personal computers. Each one has a 

68000 series CPU, local memory, and a large bit- mapped 

display. Workstations can be configured with or without 

local disk, as desired. All the workstations run a version of 

4.2BSD UNIX specially modified for networking. This 

arrangement is a classic example of a network operating 

system: Each computer runs a traditional operating system, 

UNIX, and each has its own user(s), but with extra features 

added to make networking more convenient. During its 

evolution the Sun system has gone through three distinct 

versions, which we now describe. In the first version each of 

the work- stations was completely independent from all the 

others, except that a program rep was provided to copy files 

from one work- station to another. By typing a command 

such as rep Ml:/usr/jim/file.c M2:/usr/ast/f.c it was possible 

to transfer whole files from one machine to another. In the 

second version, Network Disk (ND), a network disk server 

was provided to support diskless workstations. Disk space 

on the disk server‟s machine was divided into disjoint 

partitions, with each partition acting as the virtual disk for 

some (diskless) workstation. Whenever a diskless 

workstation needed to read a file, the request was processed 

locally until it not down to the level of the device driver, it 

which point the block needed was retrieved by sending a 

message to the remote disk server. In effect, the network was 

merely being used to simulate a disk controller. With this 

network disk system, sharing of disk partitions was not 

possible. The third version, the Network File Sys- tem 

(NFS), allows remote directories to be mounted in the local 

file tree on any work- station. By mounting, say, a remote 

directory “dot” on the empty local directory “/usr/doc,” all 

subsequent references to “/usr/doc” are automatically routed 

to the remote system. Sharing is allowed in NFS, so several 

users can read files on a remote machine at the same time. 

To prevent users from reading other people‟s private files, a 

directory can only be mounted remotely if it is explicitly 

exported by the workstation it is located on. A directory is 

exported by entering a line for it in a file “/etc/exports.” To 

improve performance of remote access, both the client ma- 

chine and server machine do block caching. Remote services 

can be located using a Yellow Pages server that maps service 

names onto their network locations. The NFS is 

implemented by splitting the operating system up into three 

layers. The top layer handles directories, and maps each path 

name onto a generalized i-node called a unode consisting of 

a (machine, i-node) pair, making each vnode globally 

unique. 

     Vnode numbers are presented to the middle layer, the 

virtual file system (VFS). This layer checks to see if a 

requested vnode is local or not. If it is local, it calls the local 

disk driver or, in the case of an ND partition, sends a 

message to the remote disk server. If it is remote, the VFS 

calls the bottom layer with a request to process it remotely. 

The bottom layer accepts requests for accesses to remote 

vnodes and sends them over the network to the bottom layer 

on the serving machine. From there they prop- agate upward 

through the VFS layer to the top layer, where they are 

reinjected into the VFS layer. The VFS layer sees a request 

for a local vnode and processes it normally, without realizing 

that the top layer is actually working on behalf of a remote 

kernel. The reply retraces the same path in the other 

direction. The protocol between workstations has been 

carefully designed to be robust in the face of network and 

server crashes. Each request completely identifies the file 

(by its vnode), the position in the file, and the byte count. 

Between requests, the server does not maintain any state 

information about which files are open or where the current 

file position is. Thus, if a server crashes and is rebooted, 

there is no state information that will be lost. The ND and 

NFS facilities are quite different and can both be used on the 

same workstation without conflict. ND works at a low level 
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and just handles remote block I/O without regard to the 

structure of the information on the disk. NFS works at a 

much higher level and effectively takes re- quests appearing 

at the top of the operating system on the client machine and 

gets them over to the top of the operating system on the 

server machine, where they are processed in the same way as 

local requests. 

 

3. Design Issues 

Now we turn from traditional computer systems with some 

networking facilities added on to systems designed with the 

intention of being distributed. In this section we look at five 

issues that distributed systems‟ designers are faced with: 

communication primitives, naming and protection, resource 

management, fault tolerance [4][5][6], services to provide. 

Although no list could possibly be exhaustive at this early 

stage of development, these topics should provide a 

reasonable impression of the areas in which current research 

is proceeding.  

 

 3.1 Communication Primitives 

The computers forming a distributed sys- tem normally do 

not share primary memory, and so communication via shared 

memory techniques such as semaphores and monitors is 

generally not applicable. Instead, message passing in one 

form or another is used [23]. One widely discussed 

framework for message-passing systems is the IS0 OS1 

reference model, which has seven layers, each performing a 

well- defined function. The seven layers are the physical 

layer, data- link layer, network layer, transport layer, session 

layer, presentation layer, and application layer. By using this 

model it is possible to connect computers with widely 

different operating systems, character codes, and ways of 

viewing the world. Unfortunately, the overhead created by 

all these layers is substantial. In a distributed system 

consisting primarily of huge mainframes from different 

manufacturers, connected by slow leased lines (say, 56 

kilobytes per second), the overhead might be tolerable. 

Plenty of computing capacity would be available for running 

complex protocols, and the narrow bandwidth means that 

close coupling between the systems would be impossible 

anyway. On the other hand, in a distributed system 

consisting of identical microcomputers connected by a lo-

megabyte-per second or faster local network, the price of the 

IS0 model is generally too high. Nearly all the experimental 

distributed systems discussed in the literature thus far have 

opted for a different, much simpler model, so we do not 

mention the IS0 model further in this paper. 

 

    3.2  Message Passing 

The model that is favored by researchers in this area is the 

client-server model, in which a client process wanting some 

service (e.g., reading some data from a tile) ends a message 

to the server and then waits for a reply message, as shown in 

Figure 2. In the most naked form the system just pro- vides 

two primitives: SEND and RE- CEIVE. The SEND primitive 

specifies the destination and provides a message; the 

RECEIVE primitive tells from whom a message is desired 

(including “anyone”) and provides a buffer where the 

incoming message is to be stored. No initial setup is 

required, and no connection is established, hence no tear 

down is required. 

 

 

 

 

 
 

 

Figure 2.  Client-server model of communication 

 

     Precisely what semantics these primitives ought to have 

has been a subject of much controversy among researchers. 

Two of the fundamental decisions that must be made are 

unreliable versus reliable and no blocking versus blocking 

primitives. At one extreme, SEND can put a message out 

onto the network and wish it good luck. No guarantee of 

delivery is pro- vided, and no automatic retransmission is 

attempted by the system if the message is lost. At the other 

extreme, SEND can handle lost messages, retransmissions, 

and acknowledgments internally, so that when SEND 

terminates, the program is sure that the message has been 

received and acknowledged.  

     Blocking versus Non blocking Primitives: The other 

choice is between no blocking and blocking primitives. With 

nonblocking primitives, SEND returns control to the user 

program as soon as the message has been queued for 

subsequent transmission (Or a copy made). If no copy is 

made, any Changes the program makes to the data before or 

(heaven forbid) while they are being sent are made at the 

program‟s peril. When the message has been transmitted (or 

copied to a safe place for subsequent transmission), the 

program is interrupted to inform it that the buffer may be 

reused. The corresponding RECEIVE primitive signals a 

willingness to receive a message and provides a buffer for it 

to be put into. When a message has arrived, the program is 

informed by interrupt, or it can poll for status continuously 

or go to sleep until the interrupt arrives. The advantage of 

these non blocking primitives is that they provide the 

maximum flexibility: Programs can compute and perform 

message I/O in parallel in any way they want. Non blocking 

primitives also have a disadvantage: They make 

programming tricky and difficult. Irreproducible, timing- 

dependent programs are painful to write and awful to debug. 

Consequently, many people advocate sacrificing some 

flexibility and efficiency by using blocking primitives. A. 

blocking SEND does not return control to the user until the 

message has been sent (unreliable blocking primitive) or 

until the message has been sent and an acknowledgment 

received (reliable blocking primitive). Either way, the 

program may immediately modify the buffer without danger. 

A blocking RECEIVE does not return control until a 

message has been placed in the buffer. Reliable and 

unreliable RECEIVES differ in that the former automatically 

acknowledges receipt of a message, whereas the latter does 

not. It is not reasonable to combine a reliable SEND with an 

unreliable RECEIVE, or vice versa; so the system designers 

must make a choice and provide one set or the other. 

Blocking and non- blocking primitives do not conflict, so 

Client sends 

request message 

Server sends 

reply message 
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there is no harm done if the sender uses one and the receiver 

the other. Receiver, although buffered message passing can 

be implemented in many ways, a typical approach is to 

provide users with a system call CREATEBUF, which 

creates a kernel buffer, sometimes called a mailbox, of a 

user-specified size. To communicate, a sender can now send 

messages to the receiver‟s mailbox, where they will be 

buffered until requested by the receiver. Buffering is not 

only more complex (creating, destroying, and generally 

managing the mailboxes), but also raises issues of protection, 

the need for special high-priority interrupt messages, what to 

do with mail- boxes owned by processes that have been 

killed or died of natural causes, and more. A more structured 

form of communication is achieved by distinguishing 

requests from replies. With this approach, one typically has 

three primitives: SEND-GET, GET-REQUEST, and SEND-

REPLY. SEND-GET is used by clients to send re- quests 

and get replies. It combines a SEND to a server with a 

RECEIVE to get the server‟s reply. GET-REQUEST is done 

by servers to acquire messages containing work for them to 

do. When a server has carried the work out, it sends a reply 

with SEND-REPLY. By thus restricting the message traffic 

and using reliable, blocking primitives, one can create some 

order in the chaos. 

 

     3.3  Remote Procedure Call (RPC) 

The next step forward in message-passing systems is the 

realization that the model of “client sends request and blocks 

until server sends reply” looks very similar to a traditional 

procedure call from the client to the server. This model has 

become known in the literature as “remote procedure call” 

and has been widely discussed [10] [12]. The idea is to make 

the semantics of inter- machine communication as similar as 

possible to normal procedure calls because the latter is 

familiar and well understood, and has proved its worth over 

the years as a tool for dealing with abstraction. It can be 

viewed as a refinement of the reliable, blocking SEND-GET, 

GET-REQUEST, SENDREP primitives, with a more user- 

friendly syntax. The remote procedure call can be organized 

as follows. The client (calling program) makes a normal 

procedure call, say, p(x, y) on its machine, with the intention 

of invoking the remote procedure p on some other machine. 

A dummy or stub procedure p must be included in the 

caller‟s address space, or at least be dynamically linked to it 

upon call. This procedure, which may be automatically 

generated by the compiler, collects the parameters and packs 

them into a message in a standard format. It then sends the 

message to the remote machine (using SEND-GET) and 

blocks, waiting for an answer (see Figure 3). At the remote 

machine, another stub procedure should be waiting for a 

message using GET-REQUEST. When a message comes in, 

the parameters are unpacked by an input-handling procedure, 

which then makes the local call p(x, y). The remote 

procedure p is thus called locally, and so its normal 

assumptions about where to find parameters, the state of the 

stack, etc., are identical to the case of a purely local call. The 

only procedures that know that the call is remote are the 

stubs, which build and send the message on the client side 

and disassemble and make the call on the server side. The 

result of the procedure call follows an analogous path in the 

reverse direction.  

    Although at first glance the remote procedure call model 

seems clean and simple, under the surface there are several 

problems. One problem concerns parameter (and result) 

passing. In most programming languages, parameters can be 

passed by value or by reference. Passing value parameters 

over the network is easy; the stub just copies them into the 

message and off they go. Passing reference parameters 

(pointers) over the network is not so easy. One needs a 

unique, system wide pointer for each object so that it can be 

remotely accessed. For large objects, such as files, some kind 

of capability mechanism [36] could be set up, using 

capabilities as pointers. 

 

 

 

 

 

 

 

 

                  Figure 3.  Remote procedure call. 

 

      Leans, the amount of overhead and mechanism needed to 

create a capability and send it in a protected way is so large 

that this solution is highly undesirable. Still another problem 

that must be dealt with is how to represent parameters and 

results in messages. This representation is greatly 

complicated when different types of machines are involved 

in a communication. A floating-point number produced on 

one machine is unlikely to have the same value on a different 

machine, and even a negative integer will create problems 

between the l‟s complement and 2‟s complement machines. 

Converting to and from a standard for- mat on every 

message sent and received is an obvious possibility, but it is 

expensive and wasteful, especially when the sender and 

receiver do, in fact, use the same internal format. If the 

sender uses its internal format (along with an indication of 

which format it is) and lets the receiver do the conversion, 

every machine must be pre- pared to convert from every 

other format. When a new machine type is introduced, much 

existing software must be upgraded. Any way it is done, 

with remote procedure call (RPC) or with plain messages, it 

is an unpleasant business. Some of the unpleasantness can be 

hid- den from the user if the remote procedure call 

mechanism is embedded in a programming language with 

strong typing, so that the receiver at least knows how many 

parameters to expect and what types they have. In this 

respect, a weekly typed language such as C, in which 

procedures with a variable number of parameters are 

common, is more complicated to deal with. Still another 

problem with RPC is the issue of client-server binding. 

Consider, for example, a system with multiple file servers. If 

a client creates a file on one of the file servers, it is usually 

desirable that sub-sequent writes to that file go to the file 

server where the file was created. With mailboxes, arranging 

for this is straight- forward. The client simply addresses the 

WRITE messages to the same mailbox that the CREATE 

message was sent to. Since each file server has its own 

mailbox, there is no ambiguity. When RPC is used, the 

situation is more complicated, since the entire client does is 

put a procedure call such as write (File Descriptor, Buffer 

Address, Byte Count); in his program. RPC intentionally 

Client Machine Server Machine 

Client 

proc. 

Client 

stub 

Server 

stub 

Server 

proc. 
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hides all the details of locating servers from the client, but 

sometimes, as in this example, the details are important. In 

some applications, broadcasting and multicasting (sending to 

a set of destinations, rather than just one) is useful. For 

example, when trying to locate a certain person, process, or 

service, sometimes the only approach is to broadcast an 

inquiry message and wait for the replies to come back. RPC 

does not lend itself well to sending messages to sets of 

processes and getting answers back from some or all of 

them. The semantics are completely different. Despite all 

these disadvantages, RPC re- mains an interesting form of 

communication and much current research is being 

addressed toward improving it and solving the various 

problems discussed above. 

 

     3.4  Naming and Protection 

All operating systems support objects such as files, 

directories, segments, mailboxes, processes, services, 

servers, nodes, and I/O devices. When a process wants to 

access one of these objects, it must present some kind of 

name to the operating system to specify which object it 

wants to access. In some instances these names are ASCII 

strings designed for human use; in others they are binary 

numbers used only internally. In all cases they have to be 

managed and protected from misuse. 

 

3.4.1   Naming and Protection 

Naming [33] can best be seen as a problem of mapping 

between two domains. For example, the directory system in 

UNIX provides a mapping between ASCII path names and i-

node numbers. When an OPEN system call is made, the 

kernel converts the name of the file to be opened into its i-

node number. Internal to the kernel, files are nearly always 

referred to by i-node number, not ASCII string. Just about all 

operating systems have something similar. In a distributed 

system a separate name server is sometimes used to map 

user-chosen names (ASCII strings) onto objects in an 

analogous way. Another example of naming is the map- ping 

of virtual addresses onto physical ad- dresses in a virtual 

memory system. The paging hardware takes a virtual address 

as input and yields a physical address as out- put for use by 

the real memory. In some cases naming implies only a single 

level of mapping, but in other cases it can imply multiple 

levels. For example, to use some service, a process might 

first have to map the service name onto the name of a server 

process that is prepared to offer the service. As a second 

step, the server would then be mapped onto the number of 

the CPU on which that process is running. The mapping 

need not always be unique, for example, if there are multiple 

processes prepared to offer the same service.  

 

 

3.4.2    Name Servers 

 In centralized systems, the problem of naming can be 

effectively handled in a straight- forward way. The system 

maintains a table or database providing the necessary name- 

to-object mappings. The most straightforward generalization 

of this approach to distributed systems is the single name 

server model. In this model, a server accepts names in one 

domain and maps them onto names in another domain. For 

example, to locate services in some distributed systems, one 

sends the service name in ASCII to the name server, and it 

replies with the node number where that service can be 

found, or with the process name of the server process, or 

perhaps with the name of a mailbox to which requests for 

service can be sent. The name server‟s database is built up 

by registering services, processes, etc., that want to be 

publicly known. File directories can be regarded as a special 

case of name service. Although this model is often 

acceptable in a small distributed system located at a single 

site, in a large system it is undesirable to have a single 

centralized component (the name server) whose demise can 

bring the whole system to a grinding halt. In addition, if it 

becomes overloaded, performance will degrade. 

Furthermore, in a geo- graphically distributed system that 

may have nodes in different cities or even countries, having 

a single name server will be inefficient owing to the long 

delays in accessing it. The next approach is to partition the 

system into domains, each with its own name server. If the 

system is composed of multiple local networks connected by 

gate- ways and bridges, it seems natural to have one name 

server per local network. One way to organize such a system 

is to have a global naming tree, with files and other objects 

having names of the form: /country/city/network/pathname. 

When such a name is presented to any name server, it can 

immediately route the request to some name server in the 

designated country, which then sends it to a name server in 

the designated city, and so on until it reaches the name server 

in the network where the object is located, where the 

mapping can be done. Telephone numbers use such a 

hierarchy, composed of country code, area code, exchange 

code (first three digits of telephone number in North 

America), and sub- scriber line number. Having multiple 

name servers does not necessarily require having a single, 

global naming hierarchy. Another way to organize the name 

servers is to have each one effectively maintain a table of, 

for example, (ASCII string, pointer) pairs, where the pointer 

is really a kind of capability for any object or domain in the 

system. When a name, say a/b/c, is looked up by the local 

name server, it may well yield a pointer to another domain 

(name server), to which the rest of the name, b/c, is sent for 

further processing (see Figure 4). This facility can be used to 

provide links (in the UNIX sense) to files or objects whose 

precise whereabouts is managed by a remote name server. 

Thus if a file foobar is located in another local network, n, 

with name server n.s, one can make an entry in the local 

name server‟s table for the pair (x, n.s) and then access 

xlfoobar as though it were a local object. Any appropriately 

authorized user or process knowing the name xlfoobar could 

make its own synonym s and then perform accesses using 

s/x/foobar. Each name server parsing a name that involves 

multiple name servers just strips off the first component and 

passes the rest of the name to the name server found by 

looking up the first component locally. A more extreme way 

of distributing the name server is to have each machine man- 

age its own names. To look up a name, one broadcasts it on 

the network. At each ma- chine, the incoming request is 

passed to the local name server, which replies only if it finds 

a match. Although broadcasting is easiest over a local 

network such as a ring net or CSMA net (e.g., Ethernet), it is 

also possible over store-and-forward packet switching 

networks such as the ARPANET [34]. Although the normal 

use of a name server is to map an ASCII string onto a binary 



International Journal of Computer Science & Emerging Technologies (IJCSET)      115           

Volume 1 Issue 2, August 2010 

 

number used internally to the system, such as a process 

identifier or machine number, once in a while the inverse 

mapping is also useful. For example, if a machine crashes, 

upon rebooting it could present its (hard- wired) node 

number to the name server to ask what it was doing before 

the crash, that is, ask for the ASCII string corresponding to 

the service that it is supposed to be offering so that it can 

figure out what pro- gram to reboot. 

 

 

 

Figure 4.  Distributing the lookup of a/b/c over three name 

servers 

  

3.4.3    Process Allocation 

One of the key resources to be managed in a distributed 

system is the set of available processors. One approach that 

has been proposed for keeping tabs on a collection of 

processors is to organize them in a logical hierarchy 

independent of the physical structure of the network, as in 

MICROS. This approach organizes the machines like people 

in corporate, military, academic, and other real-world 

hierarchies. Some of the machines are workers and others are 

managers. For each group of k workers, one manager 

machine (the “department head”) is assigned the task of 

keeping track of who is busy and who is idle. If the system is 

large, there will be an unwieldy number of department 

heads; so some machines will function as “deans,” riding 

herd on k department heads. If there are many deans, they 

too can be organized hierarchically, with a “big cheese” 

keeping tabs on k deans. This hierarchy can be extended ad 

infinitum, with the number of levels needed growing 

logarithmically with the number of workers. Since each 

processor need only maintain communication with one 

superior and k subordinates, the information stream is 

manageable [15]. An obvious question is, “What happens 

when a department head, or worse yet, a big cheese, stops 

functioning (crashes)?” One answer is to promote one of the 

direct subordinates of the faulty manager to fill in for the 

boss. The choice of which one can either be made by the 

subordinates themselves, by the deceased‟s peers, or in a 

more autocratic system, by the sick man- ager‟s boss. To 

avoid having a single (vulnerable) manager at the top of the 

tree, one can truncate the tree at the top and have a 

committee as the ultimate authority. When a member of the 

ruling committee malfunctions, the remaining members 

promote someone one level down as a replacement. 

Although this scheme is not completely distributed, it is 

feasible and works well in practice. In particular, the system 

is self- repairing, and can survive occasional crashes of both 

workers and managers without any long-term effects. In 

MICROS, the processors are mono- programmed, so if a job 

requiring S processes suddenly appears, the system must 

allocate S processors for it. Jobs can be created at any level 

of the hierarchy. The strategy used is for each manager to 

keep track of approximately how many workers below it are 

available (possibly several levels below it). If it thinks that a 

sufficient number are available, it reserves some number R 

of them, where R 2 S, because the estimate of available 

workers may not be exact and some machines may be down. 

If the manager receiving the request thinks that it has too few 

processors avail- able, it passes the request upward in the 

tree to its boss. If the boss cannot handle it either, the request 

continues propagating upward until it reaches a level that has 

enough available workers at its disposal. At that point, the 

manager splits the request into parts and parcels them out 

among the managers below it, which then do the same thing 

until the wave of scheduling requests hits bottom. At the 

bottom level, the processors are marked as “busy,” and the 

actual number of processors allocated is re- ported back up 

the tree. To make this strategy work well, R must be large 

enough so that the probability is high that enough workers 

will be found to handle the whole job. Otherwise, the re- 

quest will have to move up one level in the tree and start all 

over, wasting considerable time and computing power. On 

the other hand, if R is too large, too many processors will be 

allocated, wasting computing capacity until word gets back 

to the top and they can be released. The whole situation is 

greatly complicated by the fact that requests for processors 

can be generated randomly anywhere in the system, so at any 

instant, multiple requests are likely to be in various stages of 

the allocation algorithm, potentially giving rise to out-of-date 

estimates of available workers, race conditions, deadlocks, 

and more. In Van,  a mathematical analysis of the problem is 

given and various other aspects not de- scribed here are 

covered in detail. 

 

3.4.4   Scheduling 

The hierarchical model provides a general model for 

resource control but does not provide any specific guidance 

on how to do scheduling. If each process uses an entire 

processor (i.e., no multiprogramming), and each process is 

independent of all the others, any process can be assigned to 

any processor at random. However, if it is common that 

several processes are working together and must 

communicate frequently with each other, as in UNIX 

pipelines or in cascaded (nested) remote procedure calls, 

then it is desirable to make sure that the whole group runs at 

once. In this section we address that issue. Let us assume 

that each processor can handle up to N processes. 

     If there are plenty of machines and N is reasonably large, 

the problem is not finding a free machine (i.e., a free slot in 

some process table), but something more subtle. The basic 

difficulty can be illustrated by an example in which 

processes A and B run on one machine and processes C and 

D run on another. Each machine is time shared in, say, l00-

millisecond time slices, with A and C running in the even 

slices, and B and D running in the odd ones, as shown in 

Figure 5a. Suppose that A sends many messages or makes 

many remote procedure calls to D. During time slice 0, A 

starts up and immediately calls D, which unfortunately is not 

running because it is now C‟s turn. After 100 milliseconds, 

process switching takes place, and D gets A‟s message, 

carries out the work, and quickly re- plies. Because B is now 

running, it will be another 100 milliseconds before A gets 
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the reply and can proceed. The net result is one message 

exchange every 200 milliseconds. What is needed is a way to 

ensure that processes that communicate frequently run 

simultaneously. Although it is difficult to determine 

dynamically the inter process communication patterns, in 

many cases a group of related processes will be started off 

together.  

 

 

 

 

 

(a)                                          (b) 

 

Figure 5. (a) Two jobs running out of phase with each other. 

(b) Scheduling matrix for eight machines, each with six time 

slots. The X‟s indicated allocated slots.  

 

 

      For example, it is usually a good bet that the filters in a 

UNIX pipeline will communicate with each other more than 

they will with other, previously started processes. Let us 

assume that processes are created in groups, and that 

intergroup communication is much more prevalent than 

intergroup communication. Let us further assume that a 

sufficiently large number of machines are available to handle 

the largest group, and that each machine is multiprogrammed 

with N process slots (N- way multiprogramming). Previous 

work has proposed several algorithms based on the concept 

of co- scheduling, which takes interprocess communication 

patterns into account while scheduling to ensure that all 

members of a group run at the same time. The first algorithm 

uses a conceptual matrix in which each column is the process 

table for one machine, as shown in Figure 5b. Thus, column 

4 consists of all the processes that run on machine 4. Row 3 

is the collection of all processes that are in slot 3 of some 

ma- chine, starting with the process in slot 3 of machine 0, 

then the process in slot 3 of machine 1, and so on. The gist 

of his idea is to have each processor use a round-robin 

scheduling algorithm with all processors first running the 

process in slot 0 for a fixed period, then all processors 

running the process in slot 1 for a fixed period, etc. A 

broadcast message could be used to tell each processor when 

to do process switching, to keep the time slices 

synchronized. By putting all the members of a process group 

in the same slot number, but on different machines, one has 

the advantage of N-fold parallelism, with a guarantee that all 

the processes will be run at the same time, to maximize 

communication through- put. Thus in Figure 5b, four 

processes that must communicate should be put into slot 3, 

on machines 1, 2, 3, and 4 for optimum performance. This 

scheduling technique can be combined with the hierarchical 

model of process management used in MICROS by having 

each department head maintain the matrix for its workers, 

assigning processes to slots in the matrix and broadcasting 

time signals. Ouster out also described several variations to 

this basic method to improve performance. One of these 

breaks the matrix into rows and concatenates the rows to 

form one long row. With k machines, any k consecutive slots 

belong to different machines. To allocate a new process 

group to slots, one lays a window k slots wide over the long 

row such that the leftmost slot is empty but the slot just 

outside the left edge of the window is full. If sufficient 

empty slots are present in the window, the processes are 

assigned to the empty slots; otherwise the window is slid to 

the right and the algorithm repeated. Scheduling is done by 

starting the window at the left edge and moving rightward by 

about one window‟s worth per time slice, taking care not to 

split groups over windows. Usterhout‟s paper discusses these 

and other methods in more detail and give some performance 

results. 

 

3.4.5    Load Balancing 

The goal of Usterhout‟s work is to place processes that work 

together on different processors, so that they can all run in 

parallel. Other researchers have tried to do precisely the 

opposite, namely, to find sub- sets of all the processes in the 

system that are working together, so that closely related 

groups of processes can be placed on the same machine to 

reduce inter process communication costs [30] [31] [32]. Yet 

other researchers have been concerned primarily with load 

balancing, to prevent a situation in which some processors 

are overloaded while others are empty [8] [38]. Of course, 

the goals of maximizing throughput, minimizing response 

time, and keeping the load uniform are to some extent in 

conflict, so many of the researchers try to evaluate different 

com- promises and trade-offs. Each of these different 

approaches to scheduling makes different assumptions about 

what is known and what is most important. The people 

trying to cluster processes to minimize communication costs, 

for example, assume that any process can run on any 

machine, that the computing needs of each process are 

known in advance, and that the interprocess communication 

traffic between each pair of processes is also known in 

advance. The people doing load balancing typically make the 

realistic assumption that nothing about the future behavior of 

a process is known.  

 

 

 

 

 

 

               

 

 

(a)                                           (b) 

Figure 7. Two ways of statistically allocating processes 

(nodes in the graph) to machines. Arcs show which pairs of 

process communicate. 

 

 

     People making real systems, who care less about 

optimality than about devising algorithms that can actually 

be used, Let us now briefly look at each of these approaches.      
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     Graph-Theoretic Models: If the system consists of a 

fixed number of processes, each with known CPU and 

memory requirements, and a known matrix giving the 

average amount of traffic between each pair of processes, 

scheduling can be attacked as a graph-theoretic problem. The 

system can be represented as a graph, with each process a 

node and each pair of communicating processes connected 

by an arc labeled ith the data rate between them. The problem 

of allocating all the processes to k processors then reduces to 

the problem of partitioning the graph into k disjoint sub 

graphs, such that each sub graph meets certain constraints 

(e.g., total CPU and memory requirements below some 

limit). Arcs that are entirely within one sub graph represent 

internal communication within a single processor (= fast), 

whereas arcs that cut across sub graph boundaries represent 

communication be- teen two processors (= slow). The idea is 

to find a partitioning of the graph that meets the constraints 

and minimizes the network traffic, or some variation of this 

idea. Figure 7a depicts a graph of interacting processors with 

one possible partitioning of the processes between two 

machines. Figure 7b shows a better partitioning, with less 

intermachine traffic, assuming that all the arcs are equally 

weighted. Many papers have been written on this subject 

[30] [31]. The results are somewhat academic, since in real 

systems virtually none of the as- assumptions (fixed number 

of processes with static requirements, known traffic matrix, 

error-free processors and communication) are ever met.        

    Heuristic Load Balancing: Here the idea is for each 

processor to estimate its own load continually, for processors 

to exchange load in- formation, and for process creation and 

migration to utilize this information. Various methods of 

load estimation are possible. One way is just to measure the 

number of runnable processes on each CPU periodically and 

take the average of the last n measurements as the load. 

Another way [20] is to estimate the residual running times of 

all the processes and define the load on a processor as the 

number of CPU seconds that all its processes will need to 

finish. The residual time can be estimated mostly simply by 

assuming it is equal to the CPU time already consumed. 

Bryant and Finkel also discuss other estimation techniques in 

which both the number of processes and length of remaining 

time are important. When round- robin scheduling is used, it 

is better to be competing against one process that needs 100 

seconds than against 100 processes that each need 1 second. 

Once each processor has computed its load, a way is needed 

for each processor to find out how everyone else is doing. 

One way is for each processor to just broadcast its load 

periodically. After receiving a broadcast from a lightly 

loaded machine, a processor should shed some of its load by 

giving it to the lightly loaded processor. This algorithm has 

several problems. First, it requires a broadcast facility, which 

may not be available. Second, it consumes considerable 

bandwidth for all the “here is my load” messages. Third, 

there is a great danger that many processors will try to shed 

load to the same (previously) lightly loaded processor at 

once. A different strategy [8] is for each processor 

periodically to pick another processor (possibly a neighbor, 

possibly at random) and exchange load information with it. 

After the exchange, the more heavily loaded processor can 

send processes to the other one until they are equally loaded. 

In this model, if 100 processes are suddenly created in an 

otherwise empty system, after one ex- change we will have 

two machines with 50 processes and after two exchanges 

most probably four machines with 25 processes. Processes 

diffuse around the network like a cloud of gas. Actually 

migrating running processes is trivial in theory, but close to 

impossible in practice. The hard part is not moving the code, 

data, and registers, but moving the environment, such as the 

current position within all the open files, the current values 

of any running timers, pointers or file descriptors for 

communicating with tape drives or other I/O devices, etc. All 

of these problems relate to moving variables and data 

structures related to the process that are scattered about 

inside the operating system. What is feasible in practice is to 

use the load information to create new processes on lightly 

loaded machines, in- stead of trying to move running 

processes. If one has adopted the idea of creating new 

processes only on lightly loaded machines, another 

approach, called bidding, is possible [40]. When a process 

wants some work done, it broadcasts a re- quest for bids, 

telling what it needs (e.g., a 68000 CPU, 512K memory, 

floating point, and a tape drive). Other processors can then 

bid for the work, telling what their workload is, how much 

memory they have available, etc. The process making the 

request then chooses the most suitable machine and creates 

the process there. If multiple request-for-bid messages are 

outstanding at the same time, a processor accepting a bid 

may discover that the workload on the bidding machine is 

not what it expected because that processor has bid for and 

won other work in the meantime. 

 

 3.4.6   Distributed Deadlock Detection 

Some theoretical work has been done in the area of detection 

of deadlocks in distributed systems. How applicable this 

work may be in practice remains to be seen. Two kinds of 

potential deadlocks are resource deadlocks and 

communication deadlocks. Re- source deadlocks are 

traditional deadlocks, in which all of some set of processes 

are blocked waiting for resources held by other blocked 

processes. For example, if A holds X and B holds Y, and A 

wants Y and B wants X, a deadlock will result. In principle, 

this problem is the same in centralized and distributed 

systems, but it is harder to detect in the latter because there 

are no centralized tables giving the status of all resources. 

The problem has mostly been studied in the context of 

database systems [39]. The other kind of deadlock that can 

occur in a distributed system is a communication deadlock. 

Suppose A is waiting for a message from B and B is waiting 

for C and C is waiting for A. Then we have a deadlock. [21] 

present an algorithm for detecting (but not preventing) 

communication deadlocks. Very crudely summarized, they 

assume that each process that is blocked waiting for a 

message knows which process or processes might send the 

message. When a process logically blocks, they assume that 

it does not really block but instead sends a query message to 

each of the processes that might send it a real (data) 

message. If one of these processes is blocked, it sends query 

messages to the processes it is waiting for. If certain 

messages eventually come back to the original process, it can 

conclude that a deadlock exists. In effect, the algorithm is 

looking for a knot in a directed graph. 
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4. DOS Survey 

 4.1  Comparison Criteria 

The main goal of distributed file systems (DFS) or 

distributed operating systems (DOS) is to provide some level 

of transparency to the users of a computer network.  

      We have tried to develop a scheme -- referred to as a 

catalog of criteria -- that allows us to describe the systems in 

an implementation independent way. The main questions to 

be answered are: What kind of transparency levels are 

provided, how each kind of transparency achieved is what 

kind of communication strategy has been proposed and 

finally, does the distributed character of the system allow 

increased availability and reliability. The last question leads 

us to an analysis of replication schemes used and to an 

evaluation of proposed failure handling/recovery strategies.  

 

    4.1.1   Transparency Levels  

We distinguish five levels of transparency. We speak of 

location transparency existing, when a process requesting a 

particular network resource does not necessarily know where 

the resource is located. Access transparency gives a user 

access to both local and remote located resources in the same 

way.  

     For reasons of availability, resources are sometimes 

replicated. If a user does not know whether a resource has 

been replicated or not, replication transparency exists.  

     The problem of synchronization is well-known. In a 

distributed environment this problem arises in an extended 

form. Encapsulating concurrency control inside a proposed 

system is what is meant by concurrency transparency. This 

includes schemes that provide system-wide consistency as 

well as weaker schemes in which user interaction can be 

necessary to recreate consistency. The distinction between 

transaction strategies and pure semaphore-based techniques 

is introduced in a special evaluation.  

     The last level of transparency is failure transparency. 

Network link failures or node crashes are always present 

within a network of independent nodes. Systems that provide 

stable storage, failure recovery and some state information 

are said to be failure transparent.  

    4.1.2   Heterogeneity  

This survey furthermore gives information on the 

heterogeneity of the systems, i. e., assumptions made about 

the hardware and which operating system is used and 

whether that O.S. is a modified or look-alike version of 

another O.S.  

     We describe the underlying network. Is it a LAN, if so, 

what kind of LAN, or have gateways [7] been developed to 

integrate the systems into a WAN world.  

 

    4.1.3   Changes Made  

There are two main forms of implementing distribution. 

First, a new layer can be inserted on top of an existing 

operating system that handles requests and provides remote 

access as well as some of the transparency levels.  

      Second, the distributed system can be implemented as a 

new kernel that runs on every node. This differentiation is a 

first hint of how portable or compatible a system is [28]. 

Some systems do not distribute all kernel facilities to all 

nodes. Dedicated servers can be introduced (strict 

client/server model). Some systems distribute a small kernel 

to all nodes and the rest of the utilities to special nodes (non-

strict client/server model). Another group of systems are the 

so called integrated systems. In an integrated system each 

node can be a client, a server or both. This survey tries to 

describe these differences.  

 

    4.1.4   Communication Protocols  

Message passing is the main form of communication 

(excepting multiprocessor systems which can use shared 

memory). We show which kind of protocols are used and 

describe specialized protocols if implemented.  

 

    4.1.5   Connection and RPC Facility  

The kind of connection established by the (peer) 

communication partners is another important criteria. We 

distinguish between point-to-point connections (virtual 

circuits), datagram-style connections, and connections based 

on pipes or streams. If a remote procedure call (RPC) facility 

is provided we add this information as well.  

 

     4.1.6   Semantics  

The users of a distributed system are interested in the way 

their services are provided and what their semantics are. We 

distinguish may-be (which means that the system guarantees 

nothing), at-least-once semantics (retrying to fulfill a service 

until acknowledged, sometimes done twice or more 

frequently), at-most-once semantics (mostly achieved by 

duplicate detection) and exactly-once semantics. The last 

kind is achieved by making a service an atomic issue (so 

called all-or-nothing principle).  

 

    4.1.7   Naming Strategy  

We describe the naming philosophy and distinguish between 

object-oriented and traditional hierarchical naming 

conventions. Our overview includes the proposed name 

space itself as well as the mechanisms used to provide a 

system-spanning name space (e. g. mounting facilities or 

super root-approaches).  

 

 

    4.1.8   Security Issue  

Security plays an important role within distributed systems, 

since the administration could possibly be decentralized and 

participating hosts cannot necessarily be trusted. Intruders 

may find it easy to penetrate a distributed environment. 

Therefore, sophisticated algorithms for encryption and 

authentication are necessary. We add four entries concerning 

this issue. First, encryption is used if no plain text will be 

exchanged over the communication media. Second, some 

systems make use of special hardware components to 

achieve security during the message transfer. Third, 

capabilities are provided that enable particular users access 

to resources in a secure and predefined way. Finally, we 

introduce the entry mutual authentication. This feature is 

provided if a sort of hand-shake mechanism is implemented 

that allows bilateral recognition of trustworthiness.  

 

    4.1.9   Failure handling  

Failure handling/recovery is a very critical issue. Since some 

systems are designed to perform well in an academic 

environment and some systems are made highly reliable for  
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commercial use, trade-off decisions must be taken into 

account. We add the following four entries to our catalog of  

 

 

 

 

 

 

 

 
 

 

criteria. Does the system provide recovery after a client or a 

server crash, does it support orphan detection and deletion, 

and is there non-volatile memory called stable storage 

 

    4.1.10   Availability  

Distributed systems can be made highly available by 

replicating resources or services among the nodes of the 

network. Thus, individual indispositions of nodes can be 

masked. (Nested) transactions are well-suited in a computer 

network. Our overview covers this feature. First of all, we 

look at the concurrency control scheme; i. e. availability is 

introduced through the following mechanisms: 

synchronization scheme, (nested) transaction facility, and 

replication.  

  

 4.1.11 Process Migration  

Our final point of interest is process migration. Some object-

oriented systems provide mobile objects; some traditional 

process-based systems support migration of processes. 

Sometimes, these approaches come along with load-

balancing schemes to increase the system's performance. We 

include this issue in our survey. 

    

 

 

 

 

 

 

 

    4.2    Table of Comparison 

The table of comparison is given to summarize and compare 

the systems discussed. It should be viewed carefully, since in 

certain ways any categorized comparison can be misleading. 

However, this way an easily legible overview may be 

obtained. The table provides quick access to a large amount 

of highly condensed information. The entries are organized 

according to the criteria used to describe the systems. 

Sometimes, a similar issue or a comparable feature for an 

entry has been implemented. We mark this with a special 

symbol (+). Here Table 1 describes the types of system and 

transparency issues like replication, access, withstanding 

failures, etc.  In the comparison, Cedar, Gutenberg, NCA/ 

NCS, Swallow performs well among all other DOS‟s [2] 

[13] [14] [16] [25] [27].  The comparison is given as follows 

 

Table 2. Table of comparison – Hardware Requirements 

Table 1: Table of comparison – Types of System & Transparency of Different Types of DOS‟s. 
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     Table 2 describes the hardware requirements of various 

DOS and supporting version types of OS they are using.  

Here most of the Dos are using UNIX as their supporting 

OS.  

     Table 3 describes the changes made the different types of 

protocols used for the communication. The communication 

part includes standard, specialized protocols, shared memory 

and RPC based protocols. And also it compares the 

connection types such as VC, datagram, Pipes/Streams of the 

different types of DOS.  In the below comparison, Cronus, 

Mach, performs well again all the Dos in the case of new 

kernel [24] [26], shared memory etc.   

 

Table 3. Table of comparison –Kernel, Communication and 

Connection    

 

      Table 4 describes the issues like semantics, naming and 

security. In the below comparison Amoeba, GAFFES, and 

Alphine performs well especially in the object oriented and 

Encryption related things.  

 

Table 4. Table of comparison – Semantics, Naming and 

Security 
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     Table 5 describes about the comparison of availabity 

issues dealing with synchronization, Replication and the 

issues regarding failuires such as, recovery client crash, 

recovery server crash, stabe storage, orphan detection etc. In 

the below comparison, Amoeba, Argus, Cedar, Locus, 

Swallow, XDFS performs well among all the tghings 

specially in the issues like replication, recovery server crash, 

process migration. 

 

Table 5. Table of comparison – Availability, Failures 

 

 
        

5. Summary 

      Distributed operating systems are still in an early phase 

of development, with many unanswered questions and 

relatively little agreement among workers in the field about 

how things should be done. Many experimental systems use 

the client-server model with some form of remote procedure 

call as communication base, but there are also systems built 

on the connection model. Relatively little has been done on 

distributed naming, protection, and resource management, 

other than building straight-forward name servers and 

process servers. Fault tolerance is an up-and-coming area, 

with work progressing in redundancy techniques and atomic 

actions. Finally, a considerable amount of work has gone 

into the construction of file servers, print servers, and 
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various other servers, but here too there is much work to be 

done. The only conclusion that we draw is that distributed 

operating systems will be an interesting and fruitful area of 

research for a number of years to come. 
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